‘ _NPUBLISHED PRELIMINARY DATA

Ih-
/7 Gy - 55,42
RADIATION FROM ELECTRONS IN A MAGNETOPLASMA

7y Ng5-33722

{AECESSION NUMBER) (THRU)

R R T T T TR e
-,
<
1
4

-«
[+
o
3
=
2 y/ /
1
»
=4 (PAGES) {CODE)
-
2 Y SF/v 2
(NASA CR OR TMX OR AD NUMBER) (CATEGORY)}

by

Harold B Liemohn

Southwest Center for Advanced Studies
P. O. Box 8478
Dallas 5, Texas

GPO PRICE  $

CSFTI PRICE(S) §

To be submitted to Hard copy (HC) 3 %
RADIO SCIENCE Microfiche (MF) - 73
# 653 July 65

ACKNOWLEDGEMENT -~ This research has been supported by the National

Aeronautics and Space Administration under grant NsG-269-62,

,\Y REPORIS wun1ROL NOa_____.’._Q




RADIATICN FROM ELECTRONS IN A MACHNETOPLASMA

by
Harold B. Liemohn
Southwest Center for Advanced Studies

P, C. Box Bu478
Dallas 5, Texas

ABSTRACT

The radiation from an electron in a homogeneous magnetoplasma has
some unusual properties as a consequence of the dispersive anisotropic
nature of the medium, Attention is confined to emission in the ordinary
(whistler) mode frequency band below the cyclotron resonance and the ex-
traordinary modeffrequency band around the plasma frequency where the
indices of refraction are appreciably greater than one and vary signi-
ficantly. Due to the large indices electrons can emit Cerenkov radiation
over a limited band of nonrelativistic energies. The cyclotron radiation
which is generated by the gyrations of electrons is complicated also by this
moperty  of the medium which permits both normal emission due to "slower
than light" motion and anomalous emission due to "faster than lipght" motion.
In the ordinary mode, for example, the anomalous cyclotron radiation is
emitted into the forward hemisphere with respect to the guiding center motion
of the electron whereas the normal radiation is emitted into the backward
hemisphere, ngﬂ;his_paper the frequency spectra and angular patterns of the
average radiated power are calculated by the Hamiltonian method which avoids
a direct calculation of the complicated electromagnetic field vectors. The
theory of emission in dispersive anisotropic media with a hermitian dielectric

tensor by Kolomenskii and Eidman is thoroughly reviewed and extended to include




relativistic energies; the complicated analytic formulas for the power
are evaluated for several special cases; and the results are applied to
recent interpretations of very low frequency (VLF) and low frequency (LF)

emissions from electrons in the magnetosphere. ' The main conclusions of the

work are as follows: l)éin the ordinary (whistier) mode most of the energy

is radiated along wave normals at large angles to the magnetic field at
frequengies other than the rectilinearly Loppler-shifted fundamental cyclotron
harmonicjwhich is contrary to assurmptions of certain VLF emission theories.

2) The resonance singularities in the indices for a cold, collisionless

the dielectric tensor for thermal motion is extremely complex and for col-
lisions is non-hermitian; consequently,(fp arbitrary upper limit is imposed on
the indices in order to make a quantitative estimate of the power. :3) Based
on this approximation the total power in the ordinary mode is a slowly
varying function of fregquency and electron energy with an average level

of 10730 watts/(c/s) per electron. 4) This level is inadequate to explain

observed VLF signals on the basis of incoherent emission, but coherent emission
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from bunches of electrons can give the observed power level of 10 watts/cm
(c/s) above the ionosphere; hence, the onus of explaining the complex dis-
persion patterns of VLF emissions is left to the coherence mechanism. 5) The
radiation in the éxtraordinary mode varies considerably with frequency and
energy but an average power level is on the order of lO-25 watts/(c/s) per
electron which still requires some ccherence to generate the observed

level above the ionosphere; however this energy cannot penetrate the ionosphere

to account for the dispersion observed by ground-based receivers.



1. NTRODUCTION

The problem of radiation from an electron in a plasmaz in a homogeneous
magnetic field occurs in astrophysics, radioastronomy, thermonuclear physics,
and magnetospheric physics. Due to the dispersion and anisotropy of the
magnetoplasma, the emission from an electron moving along a helical tra-
jectory has some very unusual properties., The analysis is restricted to
those frequency bands in the ordinary and extraordinary modes where the in-
dices are appreciably greater than one., The polarization induced in the me=~
dium by thé electronic charge produces Cerenkov radiation when the local
phase velocity is less than the particle velocity, and acceleration due to the
orbit gyrations of the charge produce cyclotron radiation which is appreciable
in the low-order harmonics at Doppler-shifted frequencies. The cyclotron ra-
diation consists of a "normal" emission in which the source moves slower than
the local phase velocity and an "anomalous" emission in which the source moves
faster,

The general nonrelativistic formulas for the frequency spectra and
polar diagrams of the power radiated by gyrating electrons in & magneto-
plasma have been given by Eidman (1958). His analysis is based on earlier
work by Kolomenskii (1953) in which the fundamental Hamiltonian method of
calculating radiation from a source is generalized for the case of an an-
isotropic dispersive medium with a hermitian dielectric tensor. Although
the formulas are available, the emission properties have not been analyzed
appreciably because extensive numerical evaluation is required. Johnson
(1962) used the expressions to evaluate the frequency spectrum of Cerenkov
radiation from an electron moving parallel to the mapnetic field. The equation

relating the frequency and angle of emission has been solved numrerically
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by Ellis (1962) for certain parameters appropriate for radiation from

Jupiter., The power formulas were also evaluated by Bazhanova arnd Shafranov (1963)

for the special case of normal emission in the ordinary mode from the funda-
radiation

mental cyclotron harmonic. However, the general problem of Cerenkov/and normal

and anomalous cyclotron radiation from several harmonics has not been con-

sidered for electrons in helical orbits,

Some approximate formulas have been derived indepencdently. Several
limiting cases of emission in a thermal magnetoplasma have been given by
Pakhomov, Stepanov, and Aleksin (1962, 1963a, 1963b). Another method was
employed recently by l'cKenzie (1963) to obtain the frequency spectra‘and
polar diagram for Cerenkov radiation from a uniformly moving point charge.

This paper has three objectives. First, the complete theory by Eidman
and Kolomenskii is reviewed in order to include relativistic effects and
pick up certain errors and omissions in the original analysis. ,Secondly,

a numerical study of the formulas for Cerenkov and cyclotron racdiation is
presented to demonstrate the unusual properties of the emissions. Thirdly,
the results are applied to recent interpretations of the very low frecuency
(VLF) and low frequency (LF) emissions from the magnetosphere (3 to 300 kc/s).

As a first approximation, the medium is represented by & cold collision-
less electron plasmal, However, at the resonance frequency where the index
of refraction becomes infinite, the power is also infinite. By introducing
additional physical effects such as thermal motion or collisions the sin-
gularity is removed but the expressions becomre so complicated that numerical
evaluation is very difficult, As a compromise an upper bound is imposed on
the index which cuts off the emission at a finite level. Fortunately, in
many cases this cutoff model is a good approximation to the index when thermal
and collisional effects are small, and the physical properties of the power

are described quantitatively in some parameter regions,




The emission at high frequencies where the propagation is like that
in a vacuum is not discussed in this paper. Attention is confined to fre-
quencies near the cyclotron and plasma frequencies of the electrons where the
indices are most interesting. In the ordinary (whistler) mode the emission
is confined to frequencies below the cyclotron frequency. In the extrzordinary
mode the emission is confined to a narrow band of frequencies near the plasma
frequency. The index of refraction for these modes is generally greater than
unity, and the electric vector of the wave rotates in the same sense as the
electrons gyrate about the field (right-hand polarization).

Due to the symmetry of the medium, the energy is radiated along cones
about the magnetic field direction., The Cerenkov radiation is emitted en-
tirely in the forward hemisphere with respect to the guiding center motion of
the electron (velocity component along the static magnetic field). The normal
cyclotron radiation is emitted entirely into the backward hemisphere in the
ordinary mode but into either or both hemispheres in the extraordinary mode.
The anomalous cyclotron radiation is emitted entirely into the forward hemi-
sphere. In general the maximum power is radiated at an appreciable angle to
the axis of symmetry.

The anomalous cyclotron radiation is a consequence of the anomalous
Doppler effect which was discussed some time ago by Franck (1942), Since this
property only arises when the source moves faster than the local phase velocity
of the medium, the physical process is anologous to the Cerenkov mechanism;
the charge induces a polarized wake in the medium which radiates electro-
magnetic energy. An elementary example of the anomalous effect occurs in the
acoustic case where the source moves faster than the speed of sound, and a
stationary observer receives both increased and decreased (Doppler-shifted)
frequencies when the source is approaching but no signal when the source is

receding.




Finally, the feasibility of Cerenkov or cyclotron radiation from
electrons as the source of VLF and LF emissions in the maénetosphere is
discussed. A review of the early observations and theories and & classification
system for the various emissions has been prepared by Callet (1959). The fre-
quency-time patterns range from continuous wide bands of noise called hiss to
discrete patterns with descriptive class titles: hooks, risers, quasi-vertical
("dawn chorus"), etc., The intensity of the wide band noise has been measured
simultaneously at several frequencies by Dowden (1962a), and after ionospheric
absorption effects were removed it was conclucded that the source spectrum is

14 watts/cm2(c/s). The morphology

relatively flat at a level of the order of 10~
of VLT emission events has been recorded by Vatts, Koch, and Czallet (1963) using
an instrument which permits continuous observations. PRecently, Helliwell (1963)
has found that certain periodic VIF emissions are trigperecd by whistler echoes.
In addition to these ground-based observations, VLF emissions have been

observed above the iocnosphere by satellites. The VLF receiver aboard the
Alouette satellite was operated by Barrington and Belrose (1963), Their tele-
metered recordings of wide band noise exhibit a systematic decrease in the lower
cutoff frequency as the satellite latitude increases. More detailed VLF emis-
sion data was obtained by Gurnett (1963) with instrumentation aboard the Injun
III satellite, In addition to the telemetered wide band signal, a six channel

frequency spectrum analyzer measured the absolute amplitude of the VLF magnetic

component, The rms. amplitude at the satellité varied from the threshold of
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107 to a maximum of 5 x 10-2 gamna ("’10-l watt/ch(c/s)). On several occasions
complex VLT emissions were triggered by spheric impulses. A clear correlation
between VLF emissions, auroral enhancements, and electron precipitation was also
revealed. In a rocket flight to 1700 km Walsh, Haddock, and Schulte (1963)

observed intense radio noise near 1 Mc/s which they attribute to emissions in

both modes.




Several mechanisms have been suggested as the source of VLF emissions.
GCallet and Helliwell (1959) proposed that geomatnetic field =ligned streams
of electrons interact, as in the traveling wave tube mechanism, to produce
amplification of existing background electromagnetic radiation. This mech-
anism was recently considered in greater detail by Dowden (1962b) who showed
that traveling wave tube amplification of selected bands of VLF noise can ex-
plain several characteristics of hiss. The possibility of Doppler-shifted VLF
cyclotron radiation from protons was proposed by lMacArthur (1953) and later
extended by Murcray and Pope (19602, 1960b). Dowden (1962c, 1963) also showed
that Doppler-shifted cyclotron emissions from discrete tunches of electrons
produce hook dispersion patterns which fit the experimental data cuite well.
Bell and Buneman (1964) found a plasma instability in the interaction between
a whistler-mode wave and a gyrating-electron stream which may initiate coherent
triggered emissions. Triggering mechanisms and cyclotron emissiecns are also
discussed by Hansen (1963). The transfer of energy Lbetween whistler-mode
signals and energetic charged particles has been examined for several VLT
emission mechanisms by Brice (1964).

In most of these theoretical analyses only the one-dimensional longitu-
dinal equations (parallel to the geomagnetic field) were consicdered so that
wave normal directions in which the maximum Cerenkov and cyclotron power is
available were tacitly omitted. Furthermore, no estimates of the total power
or its spectrum were attempted. VWith the power estimates presentecd here it is
demonstrated that incoherent emission is undoubtedly inacdecuate Lut ccherent

emission from bunches of electrons may provide the observed power level.




The Hamiltonian method for calculating the energy radiated by
a charged particle in an anisotropic dispersive medium is described
in some detail. The solution which was formulated by Kolomenskii (1953)
is a generalization of a method employed by Heitler (1954 and earlier
editions) and others for calculating particle emissions in free space.
The name of the method arises because the coefficients in the eigenwave
expansion for the vector potential of the radiation field are just
the canonical variables of the Hamiltonian for the system.

Any homogeneous medium which is electromagnetically dispersive
and anisotropic is characterized by a complex dielectric tensor g (w,9,8)
where w is the angular propagation frequency and @ and @ are the polar
and azimuthal angles measured from some reference direction. It is

necessary for the following analysis to assume that this tensor is

hermitian

£ = s' (2-1)

where the asterisk denotes the complex conjugate and transpose. Furthermore,
the magnetic susceptibility of the medium is assumed to vanish so that
the permeability u of the medium is that of free space. The implications
of these assumptions in a magneto-ionic medium are discussed in the next
section,

A charged particle moving through such a medium may radiate electro-
magnetic energy if it is being accelerated or if its velocity is greater

than the phase velocity of the medium, The electric and magnetic fields




which are generated by a particle with charge e, trajectory r, and
velocity v are described by Maxwell's field equations (CGaussian units)

and some familiar subsidiary relations.

VxH -D/c = un(e/c) v 6(r-r ) (2-2)
- = - —=e

VxE +B/c =0 (2-3)

VeB=0 (2-4)

VeD= 4we6(£;£e) (2~5)

D=g+E, B=H (2-6)

where 8 is the Dirac delta function and the dot denotes 3/9t.

By introducing the electromagnetic potentials, A and ¢, which are

defined by the field quantities,

E = -V4-h/c (2-7)

B

V x A, (2-8)

Egs. (2-2) to (2-6) reduce to

Vx(VxA) + Q'V;/C + g-é/cz = 4nfe/c) vé(r-r.), (2-9)
-VegeVp = VegeA/c = tmed(r-r,). (2-10)

Since the potentials are not uniquely defined by Egs. (2-7) and (2-8)

a Coulomb gauge condition may be imposed on them

Vegeh = 0 (2-11)
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In this gauge ¢ is just the static potential of the source charge and D = gV

t

is the corresponding static vector field. It will be shown that the electro-
magnetic radiation fields E.n and B, are derivable from the vector potential
A alone.

In order to express these equations in canonical form it is necessary to
consider only that part of the field which lies inside an arbitrarily large
but finite cubic volume t = L° where L > characteristic wavelength. In this
volume the potentials are represented by a superposition of eigenfunctions A,
and ¢, |

(2-12)

where q, and q,, are expansion coefficients. The eigenfunctions are required

to satisfy the boundary conditions,

_é_)\’ Vxé_}\’ ¢A’ V¢)‘
periodic on the surface ¢ (2-13)

of the volume T,

and the homogeneous wave egquations,

|
o

2 2
- . = 2-14)
Vx(Vxé_A) W' g é_)\/c ( )

0]
o

2 2., 2 .
vV + wjEVe,/c (2-15)
where the eigenvalues wk~and g, are real constants. Since the divergence
of a curl always vanishes the eigenfunctions A, defined by Eq. (2-1%#) also
satisfy Eq. (2-11) as required. The orthogonality of the set of A, with

respect to the weighting function g can be verified using Eq. (2-1),

(2-13) and (2-14) and the divergence theorem,



2- 2 :':. . = 2 - *_ *o
(wu mA) [drAu £ AA c ]dr[éa VxVx_é.‘J év VxVxéA]

2 <t R (2"16)
c deV-[é;ngéA-é;xVxéu] =0, (A # W)

The orthogonality of the set of Ve, with respect to g is verified analogously.

The normalization of the eigenfunctions is chosen such that

* 2

JataTegeA = unc“s

—u.'- -\ ;u (2-17)
fdtVd;u-g-Vd)}‘ = Yme GMJ

! The orthogonality of _Ii)\ and V¢u for all A,u with respect to the weighting

function g can be proved with the aid of a vector identity,
fdr[gﬂix(\?xa) - VxbeVxa] = -[dg_-(ngx:a_) (2-18)

Inserting a = é-A and b = V¢j, the surface integral vanishes due to the boundary
conditions and the last term of the volume integral obviously vanishes so that

with the aid of Egs. (2-1) and (2-1u4)
Jatal-g-ve, = [farve +ga, 1" = 0 (2-19)

The expansions for A and ¢ permit Egs. (2-9) and (2-10) to be reduced to
a system of uncoupled elementary scalar equations for q, and G5y* If Eq. (2-9)
is multiplied by f\_u and integrated over T, the orthogonality relations derived
above reduce the vector equation to simple harmonic oscillator equations for the

set of q“l s

. 2 _ . b3 _
q, g E (e/c)v ﬁu(ze) (2-20)

3.

The forcing function depends on the dielectric tensor since A must satisfy
- =u

Eq. (2-14) and on the time through r_ and v. Similarly multiplying Eqs. (2-9)
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and (2-10) by V¢§ and integrating over T yields

& = {e/cIveve (T ) (2=211)
ey, = le/c)y=vé (r ) (2-21")
2 b
cqg, T e¢u(£é) (2-21)

respectively. Since r, is explicitly time dependent, 6¢j(£e)/6t = X:V¢i(£e),
and therefore Eq. (2-21') is redundant because it is just the time derivative
of Eq. (2-21), Hence, the complete solution for the static and electromagnetic
fields can be obtained in principle by solving Egs. (2-20) and (2-21) with the
appropriate set of éu and ¢u for the medium.

Since A and ¢ are determined by uncoupled systems of equations, the electric
and magnetic fields which they prescribe are also uncoupled. In particular the

electromagnetic fields are obtained from the vector potential alone using Egs.

(2-7) and (2-8),

E = -A/c B = VxA (2-22)
—em - —em —_

In the present application only the energy of the radiation field is

required and it is given by the general expression

) (2-23)

~ 1 ' b .o S .
vty o faxggd B,

The magnetic energy term is simplified with the aid of Eq. (2-18). Inserting
a=4A,and b = é:, noting that the surface integral vanishes by the boundary

conditions, and using Eq. (2-14), it is found that

deVxA“'VxA = (w2/c2)fth"'s°AA (2-2u4)
- - A —u ==

A

Hence, using the normalization of Eq. (2-17), Eq. (2-23) reduces to
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® Nee 2e% 1 e 2 =
W(t) = jat' + == = 2=
(t) = [ %(q q muququ) > %(ququ+ wiqq,) %wu (2-25)

This expression is identical to th

fu
ot
Hh

o
~

s
et
'y
o
in
fu
3
th

o
0

harmonic oscillators which describe the radiation field.,

The polarization of the electromagnetic waves can take two arbitrary
directions which correspond to the two possible modes of propagation in the
medium. In the foregoing equations these different modes of polarization are
denoted by different indices A(or u). In the following equations only one mode
is considered.

In order to evaluate the summation in Eq. (2-25) it is necessary to assume
a particular form for the eigenvectors éu which satisfy Egs. (2-13), (2-14) and

(2-17). Here, for convenience, they are chosen to be

év = JE?'C(gu/nuL3/2) exp (-ik °r) (2-26)

where 3u is the polarization vector, n, is the index of refraction and Eﬂ is

the propagation vector. (The sign convention in the exponent is opposite that
by Kolomenskii and Eidman, but it is essential for the equations to be consistent
with the polarization convention used in magneto-ionic theory.) The orthogonality

of éu in 1 is assured if the components of Eunare given by kun = 2nun/L where the

W, are integers and n = X, ¥y, z. The components of a, and n , are determined

v
in principle by Egs. (2-14) and (2-17) which reduce to

(c2/wu2)[ki§ ( (2-27)

- k. (k
W ==y =

a“egea =n
T T

Since the wavelength is small compared to L (L -+ =), k-space is approximately

continuous and u-space can be represented by continuous spherical coordinates

u,6,@ without loss of generality. (The polar and azimuthal angles, 6 and @, are
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independent of the space variables in 1.) Furthermore, by definition wn/c = k
= 2mu/L so that the frequency w will be used as the independent variable with
k(w,6,0), n(w,6,¢) and a(w,®,#) in general, and the subscript u is omitted
hereafter,

The number of oscillators in t which radiate into the solid angle dQ = sin6d6dp

and the frequency interval between w and w + dw for a prescribed polarization is

given by
Tdsu = uzdudQT
w2n3L3
=“mos (Lt 5%) dedor=pdudin (2-29)

where p(w,8,f) is the density function of the radiation. (In Kolomenskii's
and Eidman's papers the frequency dependence of n was omitted in the definitiom
of p.)

With a continuous variable for y the discrete summation in Eqg. (2-25) trans-
forms into a volume integral over the continuous variable w. Hence, the dif-

ferential energy of the radiation field can be expressed as

a%W = wpduwd (2-30)

where w (w,8,08,t) is the energy of a forced oscillator in dwdQ.



3. EMISSION IN A MAGNETO-IONIC MEDIUM

The foregoing general equations are developed further in this
section for emission in a magneto-ionic medium which consists of a
uniform static magnetic field and a homogeneous electrically neutral
plasma. Such a medium is dispersive and ani;otropic with respect
to the direction of the magnetic field. The analysis follows
Eidman's method with some modifications and corrections.,

The xyz coordinate system is oriented such that the z-axis is
parallel to the static field B . If collisions are neglected, the
orbit of a relativistic electron in the static field consists of a
gyration about the field direction and a drift along it as shown in
Fig. 1. Hence, the position (rg) and velocity (v) coordinates along

the x, y, z axes are, respectively,

-1 |

Yry cos vy “wy t, yry sin Y Cwg t, v, T (3-1)

-v. sin y-lm t vV, cos y-lw t v (3-2)
1 B ? 1 B ? 2°

where the subscripts 1 and 2 refer to components perpendicular and paral-
lel to B, and the relativistic corrections have been introduced explicitly.
The nonfelativistic cyclotron or gyro frequency is related to B, by

wp = IeIBO/mc and the nonrelativistic gyro radius is given by ry = vl/wB.
The relativistic factor y is defined as usual by

-1/2 2
’

v = (1-8%) 8% = (v;2 + v, %) /2, (3-3)
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The propagation vector k is at some angle & with respect to

B

B, in  general, and it is arbitrarily placed in the yz plane since

there is azimuthal symmetry,

k= kk = k sin 6 F + k cos 8 z. (3-4)
where ﬁ, ;, 2 are unit vectors. The components of the electromagnetic
fields are taken along the orthogonal directions Q, 6, % as shown in Fig. 2.

The dielectric tensor for a magneto-ionic medium can have several
forms depending on which properties of the plasma are important. In
addition to the frequency domain, the effect of thermal motion, collisioms,
or ionic motion alter the dielectric tensor appreciably under certain
conditions. Zlementary derivations of the tensor for a cold plasma
are given by Ratcliffe (1959), Ginzburg (1960) and others. Several
papers have treated electromagnetic wave propagation in hot plasmas
recently, and an extensive review is provided by Stix (1962). It is
noteworthy that the tensor is hermitian when thermal motion or ionic
motion is included but is not hermitian when collisions are important.

The polarization of the electric vector of the wave field and the
index of refraction for the medium are obtained from the components
of the dielectric tensor. In terms of the spatial configuration in

Fig. 2 the polarization coefficients are defined by

Eg/E, = iug (u,8), E /E, = iu, (u,0) (3-5)

and the index is denoted by n(w,8), where ag and o, may be complex but n

k

must be real in the following solution.
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The components of a (and n) in this medium are determined by
Eqs. (2-27) and (2-28) for a prescribed g. Since the electric field
of the propagating wave must satisfy the wave equation its amplitude
vector E must satisfy Eq. (2-27). Hence, the solution of these four
complicated algebraic equations is obtained indirectly by assuming that

a = gE/Ex. The constant of proportionality is easily shown to be

2 (14?2 (3-6)

e = (1+|Eg/ED)

(Eidman's normalization factor k = 1/¥2 does not satisfy the equations

unless cos 8 = * 1.) Therefore, the components of E_in the cartesian

coordinate system of the electron are given by

a, = K, a_ = ixay a_ = ira (3-7)

where

ay = ag cos 9 + a) Sin <]
(3-8)
a, = oy cos g - ag Sin 6
With the foregoing explicit expressions for A, r,, v, k, and a
given by Egqs. (2-26), (3-1), (3-2), (3-4), and (3-7) respectively,
the forcing function in Eq. (2-20) takes the form
(e/c)vep™ = — HT 4 (-iv, sin Lot + a v, cos ylut +a_v )
vA 1372 1 Y up y'1 Y ¥ 22
(3-9)

exp (+ik sin6 yr; sin y'let + ik cos® v2t)
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This expression can be simplified by introducing the Bessel function

4o
exp (+iX sin ¢) = ) J(X) exp (+is¢)

so that

where the prime denotes differentiation with respect to X.

(ay cos ¢ - i sin ¢) exp (+iX sin ¢)

400

+o

Z; (-J; + usts/X) exp (+is9)

1 .
5 z: (ayJS+1 + ast-l + Js+1 - Js-l) exp (+isé¢)

Hence, Eq.

(2-20) for the forced harmonic oscillator has the simple form

where

and

with

and

Pg(w,6)

Cs(m,e)

X(w, 0)

+o

g + w2q =) Cs exp (+ip.t)

- A7 deck

a L3/4

wﬁsme=yﬁﬂmw(w%)ﬁne

B1

= vi/c

= st/y + v2k cos B = smB/y + 32 wn{w,0) cos ©

82 = V2/C

[-BlJS'(X) + (aysBl/X + azaz)Js(X)]

(3-10)

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)
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With the initial conditions q = q = 0 at t = 0 the general solution of
Eq. (3"12} is
exp(ip t)-exp(+iuwt) exp(ipst)-exp(—iwt) (3-17)

+o0 400
q = q. = Z: C +
2; s & B 2w(w-ps) 2w(w+ps)

The sum of the energies of all the modes then vanishes at t+ = 0 and is

given by
P 5 %
W = Z - (qsqs + w qsqs) + cross product terms
- 2 (3-18)
o0
= ZZ 1 |c |2 l-cos(®-p ) T l-cos(wtp ) T oscillating cross
= 3 + 5 product terms
(w-pg) (wtpg)

at t = T, In the limit T + =, the explicit summation terms reduce to Dirac

delta functions,

. 1- . . in(wt
Lim cos(wip ) T _ Lim sin(w p) T s(u'p ) (3-19)
T » (+ 2 T» o + = 8

m(w=p )T w(wipy)

The first equality can be demonstrated by partial integration and the second is
discussed by Schiff (1955), The average (unweighted differential) energy per
unit time radiated into t by the electron is given by

Lim w/T = L E le 1? [8Co-p) + s(urp )] (3-20)

T > o 2 L 'S s s
where the oscillating transient terms vanish as 1/T.

The limiting process which introduces the §-functions is justified provided
that the radiation never reaches the boundary o of the vclume t. This is assured
because L and T can approach infinity and simultaneously satisfy the inequality

L >> ¢T/n.
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The mathematical interpretation of the §-function terms depends on the
propagation properties of the vector-potential quantity
= .+
quAu qw,e,ﬂ(t)ém,e,{b(a)ﬂe)(p i(lwt-k*r) (3-21)
where q is given by Eq. (3-17), A is given by Eq. (2-26), and w is always posi-
tive. If a particular set of values, wys Sy > 0, 91, satisfy w = +p, then by

Eq. (3-13), w), =Sy, 8, + 7 satisfy w = -p_. Therefore, the term §(w-pg)

1
which is associated with the first term in Eq. (3-17) has a propagation ex-

ponent of the form eyt - kyysinb - klzcosel where k = wn/c, and the term

1
6 (w+p_) which is associated with the second term in Ea. (3-17) has a propaga=-
s p

tion exponent of the form -w,t + klysinel + klzcosel. Hence, these two terms

1
describe identical radiation which is called "normal" emission because of its

—52’

dispersion relation. Similarly, if Wy Sy < 0, 62 satisfy w = +p_ then s

6, + m satisfy w = -pg and the two terms have a common propagaticn exponent
of the form f(wzt - koysinb, - k2zcose2). This radiation is czlled "anomalous"
because of its unconventional dispersion relation which is discussed below.

Due to this duplication of emission properties, the energy expression can
be simplified., By introducing the explicit propertytxakﬂw,e) = —ae.k(w,6+n),
which is valid in the magneto-ionic medium, and using the properties of Bessel
functions it is readily verified that Cs(w,e) = -C_c(w,8+1). Therefore, the
energies given by G(w-ps) and 6(w+ps) are identical and the radiation emitted
by the electron is described completely by the terms

Lim w_/T = ﬂICS|25(w-ps) (3-22)
T-reo .
where s = 0, Y1, ¥2 ..., The frequency w and polar angle & of the emission are
related by the anisotropic dispersion equation w = +p., henceforth called the

emission equation, which can be expressed in the form

82 cos 0 _ = (w-stly)/wn(w,%? (3-23)



- 19 =

The physical explanation of the emission terms is provided by the
properties of the emission equation, The s = 0 term describes Cerenkov
radiation, emission from induced polarization in the medium, because 8, must

satisfy the usual relation cos 6 _ = 1/82n. Since n is independent of the sign

0
on the static-field vector-component, the Cerenkov emission is in the forward
hemisphere with respect to the velocity component 62(82cos 60 > 0). For s # 0
the emission is due to the cyclotron harmonics lsle/y. The distinction between
the normal and anomalous emission is obtained from the emission equation relation
B2n cos es ; 1 for s z O, Hence, the puiding center moves slower than the
parallel component of the phase velocity when s > 0 and a normal Doppler effect
is obtained but it moves faster when s < 0 and an anomelous effect is obtained.
The normal emission appears in either the forward or backward hemisphere

(82 cos 8 : 0) depending on whether w z st/y whereas all the anomalous emis-
sion is in the forward hemisphere (82 cos es > 0). Hence, frecuencies below

the source frequency lsImB/y are emitted into both hemispheres when the pro-
pagation modes permit. The simultaneous emission of both the normal and anom-
alous radiation is due to the dispersive anisotropic nature of the medium which
allows waves of a given frequency to be reinforced in many directions at once,
The general solution of Eaq. (3-23) for cos es(w) and its epplicetion to

VLF and LF emissions in the magnetosphere is considered in the follewing section.

The Cerenkov and cyclotron power which is radiated by the electron into

dwd? is given by terms of the form

d3PS = Lim  (w_/Tlpdude, s =0, 11, ¥2,... (3-2u)

T > o
where the definition of average power and Eq. (2-30) have been used. In
order to perform the integration over frequency or solid angle, the delta

function must be reduced to an elementary form by the expansion,
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8(£(x)) = 8L(x=x)F"(x )] = |f'(xs)|‘1 8 (x-x_) (3-25)

where x = © or w and Xg is that value of & or w for which w = pg. Therefore,
with p and Cs given by Egs. (2~29) and (3-14), the power radiated into the
linear frequency interval df = dw/2m is obtained by a trivial integration,

- 2 2 . 2

dPs/df = (27 e“/cB,) w{K [-BlJS(X) + (uysﬁl/X + 0,85)35(X)] (3-26)

* [1 + (w/n)An/dwl/11l - (dn/d8)/n tan ej}
p = es(w)

where es(m) must satisfy Eq. (3-23). Similarly, the power radiated into

the solid angle dQ is given by

dzPs/dQ = (e2/2nc) wznxz[—BlJ;(X) + (uysBl/X + GZB2)JS(X)]2

(3-27)
* [1 + (w/n)dn/dwl/|1 -8,n cos 6 (1 + (m/n)bn/&w]B
w =ws(e)

where ws(e) must satisfy Eq. (3-23). (These expressions for the power differ
from those given by Eidman in the factors p,x, and the sign on Jg, as well
as including relativistic energies,)

Two limiting cases of these power expressions are of special interest,
First, consider 81 = 0 which gives

dFg/af = (2me?/cB,) w i<2a22822

(3-28)

« [1 + (w/n)an/aw]/ll-(an/ae)/n tan 6]}
b = €g(w)

for the Cerenkov radiation and the cyclotron terms vanish. Secondly, consider

B, =0 which gives pg = smB/Y and
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a%p /dn = (e?/2nc) m2m<2[-ela'(><) + o sB.J_(X)/x12 - [l+(u3/n)3n9w]} (3-29)
8 s y l s w =

for s » 1. Here only the normal cyclotron emission is present since the motion

needed for the anomalous effect is absent. (Although the index is omitted from

the emission equation in this case, the frecuencies are restricted tec the propa-
gation bands of the modes, of course.)

In free space where n = 1, a, = 1, o = 0, the cyclotron terms in Eq.

6
(3-29) reduce to the Schott formula (see Landau and Lifshitz, 9-8, 1951) when

the power from both modes is added (s > 0 only since n = 1).
a?p_/an = (e*/2me) (sPu?/v?) [8,2072(8s sin®) + cot?6 J_2(8;s sin®)]  (3-30)

where X from Ea. (3-15), «k from Eq. (3-6), and v = st/v have been introduced

explicitly., Sincen 2 1, oy ® 1, and o, >> 1 (for sin® >>0) in a magnetoplasma,

k

a comparison of Egs. (3-30) and (3-29) shows that the magnitude of the power

radiated into a plasma is far greater due to the interaction with the medium

but the emission equation limits the angles of emission (or freauency bandwidth).
Although the power expression d2Ps/dQ is evaluated at 6 and ¢ (¢ is

arbitrary by azimuthal symmetry) this pdwer follows a rey path aleng 67 and

2 vhere 6 # & in general. It hes been shown by Scott (1950) that the ray path

is in the direction of the time-averaged Poynting vector <S> = (c/um) <€, x

Eeﬁ>' With the electromagnetic fields defined by Fa. (2-22) and a proportional

to E from Eq. (2-26) the ray path direction is along
<$> a <E x (k x E)> (3-31)

Since E can have an appreciable component along k in an anisotropic medium,
the electromagnetic energy does not propapate in the k direction in general.
For the specific @y and & given in the next section, it is readily verified

that the direction of <S> is within the acute angle between E.and b Eo’




4, EMISSION IN A COLD, COLLISIONLESS,
ELECTRON PLASMA

In order to evaluate the allowed frequencies and radiated power
from a relativistic electron it is necessary to choose a model for
the plasma. In this section the plasma is assumed to be so cold that
thermal motion can be neglected, so tenuous that collisions can be
neglected, and the frequencies of interest are sufficiently high that
ionic motion can be neglected. Such a model is adequate for many
physical systems including several aspects of VLF propagation in the
magnetosphere. In the present application, however, this elementary
model is found to be unsatisfactory at certain frequencies and angles
of emission.

Due to the complexity of the formulas and the large number of
independent parameters, the behavior of the emission is demonstrated
by several examples. In particular the specific parameter values are
appropriate for trapped-electron orbits at sample points in the geo-
magnetic field. A brief summary of orbit and medium characteristics
for the magnetosphere is given in the Appendix.

Since the propagation frequency is an independent variable here,

it is convenient to introduce the dimensionless quantities F and P which

are defined to be the propagation-cyclotron frequency ratio and the

plasma-cyclotron frequency ratio, respectively,

F = w/wB P = ”P/“B

(4-1)
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The plasma frequency is related to the electron density N, by NP2 =
HwNoe‘/m. In terms of the spatial configuration in Fig. 2 and these
new variables, the dielectric tensor components for the medium described

above have the form (Ginzburg, 1960)

=1+ P%/(1 - %)

c =
XX
ege = 1 - P2(sin? 0 = F2)/F%(1 - F2)
€., =1 - P2(cos2 0 ~ F2)/F2(l - F2)
kk
(4-=2)
_ L .02 2
€eo = “Egy * + iP® cos O/F(1 - F°)
e e = 4 ip2 s 2
€k = ekx + iP“ sin 8/F(1 - F<)
€ox = *Exg = *+ P cos 8 sin 8/F%(1 - F?)

For these specific components the indices of refraction for the medium

are found to be

n2+ =1+ 2p% (P2 - F2)/D+ (4-3)

with

D, = ¥ [F* sin" o + ur?(p? - F2)? cos? 6]1/2
z (4-4)

- 2F%(P2 - F%) -2 sin? o

and the polarization coefficients defined in Eq. (3-5) are given by
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Goy = -F cos 9/[F2 + P2/(ni - 1)]

= -2F(P? - F?) cos 6/[-F2 sin? ® (4-5)

n

(" sin* 8 + uF2(P? - F2)2 cos? 0)172)

2

o4 = -(nf - 1) F sin 8/(P2 - F?)

= -[P?F sin 6 -a p2 cos 6 sin 0] (4-6)

3

J[P%(cos? 8 - F2) - F2(1 - F?)]

In this notation the upper (+) sign denotes the ordinary (whistler) mode

the lower (-) sign denotes the extraordinary mode of polarization (Ginzburg's

nomenclature). The expressions for « + and % 4 describe a wave of the form
6L =

exp i(wt - ker).

The indices given by Eqs. (4-3) and (4-4) have several unusual

properties. They have resonances (n3_=i'~) at

F2, = 22+ 1) ] %-[(PZ + 1)2 - 4p? cos? 0112 (14-7)
or -
cos? O = F2[1 + (1 - F2)/P?] (4-8)

as well as at F = 0, and they have cutoffs at

F0=P (n+=0)

(4-9)

'+

1, (1, p2,1/2 -
FX’Z 5+ (p+ P9 (n_ = 0)

From these relations it can be verified that Fp, <P and lcos o], Fy >

Fp_>P and 1, and F, <P, In a slowly varying medium electromagnetic

energy is absorbed at a resonance and reflected at a cutoff in general.
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In the frequency band 0 < F < FR+’ the ordinary mode index n, is

real and appreciably greater tham unity; for FR+ <F < FO’ n, is imaginary
(evanescent); and for FO <F <o n, asymptotically approaches unity. In
the frequency band 0 < F < Fz, the extraordinary mode index n_ is imaginary;
for Fz < F < Fp_, n_ is real and increasing; for Fro < F < Fyy n_ is again
imaginary; and for FX < F < =, n_ asymptotically approaches unity.

At vervy high frequencies where the index is near unity, the radiation
from an electron is described approximately by the free-space formulas
derived by Schwinger (1949)., For those frequencies where the index is
imaginary, emission of electromagnetic radiation cannot occur. Hence,
attention will be confined hereafter to the ordinary-mode frequency band
0 <F < Fp, where n, > 1 and to the extraordinary-mode frequency band
FZ < F < Fg_ where n_ > 0. (Since ionic motion has been neglected, the
frequencies are further restricted here to F >> m/M, Pm/M where M is
the ion mass).

The ordinary mode frequency band 0 < F < FR+ is often called the whistler
m ode because VLF radio whistlers propagate in this mode. The whistler-
mode index of refraction is plotted in Fig., 3 as a function of F with

8 parametric and P = 2, For a given F (and P) it is apparent that |cos 6> cos 6&g.

This mode is frequently represented by its quasi-longitudinal approximation

Ly 2

n2 = 1+ P?/F(| cos 8] - P for F2 sin® 8/cos? 8 << (P2 - F%)°  |4-10)

and its resonance value, |cos 6|, is also indicated in Fig. 3. When the
solution of the emission equation is near the resonance, the discrepancy
between P, and |cos 8| can cause serious errors in the power evaluation if

the approximation is used.
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The extraordinary-mode frequency band Fy < F < Fp_ has no special
designation nor resonance approximation. It is shown in Fig. 4 es a
function of F with © parametric and P = 2. Here, for a given F 2 P, |cos 6 § cos BR.

The polarization of these modes is quite similar. From Egs. (4-5)
and (4-6) it can be shown that the electric vector of the whistler mode
always rotates in the same sense as electrons gyrate about the static
field. The rotation in the other mode has the same sense when F > P but
is opposite when F < P because n_<l.,

Although the indices of refraction given in Eq. (4-3) are complicated
algebraically, when they are substituted into Eq. (3-23), the emission
equation for both modes of propagation reduces to a quadratic in cos2BS(F),

y

A cos es + B cos2

es +C=0 (4-11)

where

a = 8IF20(p2-r?) - F2(P2-F9)] + 82 p2F2(F-s/v)2,
B = s§r2[2<p2-r2)2 + P2=2F%] (F-s/7)? - P2(F-s/m)", (4-12)
¢ = F2(p2-F%+1) (F-s/v)".

The allowable parameter ranges for 82 and P and allowable frequencies F are
determined by the condition that the elementary roots,

+
cos? 6; = [-B L (B2-'-LAC)1/2

1/2A (4-13)
are real, positive, 2 cos? 0r according to the mode, and ¢ 1. These super-
scripts which denote the two roots should not be confused with the subscripts

(}) which denote the two modes of propagation. In keeping with the emission




+
directions assigned by Eq. (3-23), it is required that 0 & 80- < /2
+ +
IR es“s n/2 when F > s/y, s > 03 or n/2 & 65’5 7 when F < s/y, s > 03
+

and 0 & Q; < T2 when s < 0 irregardless of F,

In principle one could determine Fs(e) but the equation is an eighth
degree polynomial and its analytical properties are more cbscure,

Since the two propagation modes are quite different, their emission
properties will be discussed separately.

Ordinary-(whistler-) mode emission is discussed first, A typical set of

+
curves for cos BS-(F) are plotted in Fig. 5 for s = 0, +1, +2, #3 with P = 2,25

and several arbitrary values of Bye The Cerenkov emission is in the forward
hemisphere, the normal cyclotron emission is in the backward hemisphere and

the anomalous cyclotron emission is in the forward hemisphere. The cos es* and
cos BS- regions are adjacent but distinct with a boundary at cos 9; defined
below. In the Cerenkov case only there is an upper limit 85 on 82 which occurs
on the boundary cos B;; however, there is always a root for small 82 when the
index is unbounded. It is apparent from the plots that a given frequency may
be emitted along two cones defined by 95+ and GS-, along only one cone defined
by Gs- or may not be allowed at all. An upper bound on the index which is dis-

cussed in the next section is also shown.,

The solutions of the emission equation for this mode have a few analytical
properties which are quite easily demonstrated. In the low frequency limit

F <<l (P~1, 82< 1) the solutions can be expanded in Maclaurin's series,

cos? o_" {(F-s/y)2 [(F-s/m? - 8,%(2P%+1)F?]

/8,° F2( 522P“+s2/y2)} [1-0(8,2F?)]

(9]
o
1]
[s2]
1

{COS2GR/[l-Bg(2P2+1)F2/(F-S/Y)2%}

[1 + o( 322}"2)] (4-14)
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. sy s . g + -
From these expressions it is easily verified that 1 > cos? 60 > cos2 60 > cos? BR,

*>1fors# 0, and cos2 8~ approaches cos? 6, for s # 0. Hence, as T

cos?
s
decreases, FR+ decreases faster sco that n, approaches the resonance limit at

FR+ and not the limit at F = 0, Also, the emission is transverse to Eo when F << 1,

In the Cerenkov limit & = 0 (s = 0) the emission equation has the simple solution
+
- l1+1 2 2 .2,1/2
F7(0) = 2 2= (1 - 485 P 4-15)
O( ) > -3 ( 85 Y°) (

Since F must be real, the parameters must satisfy the condition 82PY.§ %a
In the cyclotron limit 6 = 0 or w, the emission equation reduces to an
elementary cubic in F which always has one root F (0 or n) in the range 0 < F < 1.

By definition the boundary between the two solutions is

2 g- (4-16)

2 + _ 2 - - -
cos es = cos es = -B/2A = cos s

and the vanishing discriminant B? = LAC determines F; and the maximum B; for
the case s = 0.

The frequency spectra and the angular patterns of the power given by
Egs. (3-26) and (3-27) have been evaluated for a few specific parameters.
The results for Cerenkov radiation and the first few cyclotron harmonics
are presented in Figs. 6and 7. The parameters of the background medium have
been assigned the values fy = wB/Zu = 102 kc/s and fp = wP/Qﬂ = 229 kc/s which
correspond to the magnetospheric locus L = 3, A = 30° defined in the Appendix.
The pitch angle Y between the electron's velocity and B, has been set at 30°

so that 82/8l = /3, In Figs. 6 and 7 the radiated power is shown for the electron

kinetic energies KE = 1Q, 1000 keV (dashed and solid curves), the very fine
structure involving AF < 0,01 is omitted. When both roots of the emission

: are explicitly given with

equation contribute to the power, the superscripts
the values of s. The dotted curves are mean values of the power in regions
with very large amplitude fluctuations where the index is unrealistically

large. The effects of a bound on the index, which are discussed in the next

section, are also included (solid curves only).
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These fipures demonstrate several unanticipated features of the emission
process, First, there is a broad maximum in the Cerenkov spectrum and
the maxima in the cyclotron spectra are not at Fl(n) as linear emission
theories tacitly assume. Secondly, the angular patterns show that the
major portion of the energy is radiated at large emission angles from
the static field B, (wave normal direction, not ray path direction).
Thirdly, the energy in the cyclotron harmonics increases with harmonic
number. Fourthly, the energy radiated by the cyclotron harmonics becomes
infinite as F + 0 or 6 » /2, Finally, the power radiated by a nonrelativistic
electron increases as 62 (or KE) decreases. (The infinite amount of energy
indicated by these last three properties is suppressed by introducing
thermal, ion, or collisional effects.)

These properties of the power expressions can be demonstrated approxi-
mately without performing extensive numerical analysis. From Egs. (4=5)
and (4-6) it is easily verified that |o | >> |ag| = 1 for O<<f<<w. Using this
result and the emission equation as a definition of n, and assuming that
lJ;l << |akJsi and that the partial derivatives of n are slowly varying,

the power expressions are proportional to
dP./df, d°P./dQ ~F3J %tan?6/83(p2-F?)? (4-17)
0 0 0 2
ap_/af, d2PS/dQ ~ stJitan:Ze/Yz BZ’(P2-F2)2 s#0 (4-18)

for T # P For small F the approximation cos 8 = F verifies additional
frequency properties. When 6 = 0 or @ it is found that ay = 0, ag = ¥ 1, X=0

and the power expressions vanish for all s except
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A "’-I_T-r; 2/)2 l ‘Iil I——]
dpy/af = [(me’/e)(we,7/8,)(14c )/ {1-Co ] |
F=Fl(“)
) 2 2 2 (4-19)
d“p_/dQ =[Ee /me) (wnB, <) (14C.) /| 1+B8,n(14CL) |
1 1 F 2 F
F=Fl(ﬂ)

where

c. = P2(2F-1)/2(1-F)(P2-F2+F)
(4-=20)

Cp = P2/2(1-F) (PP -F%)

In addition to the results at L = 3, A = 30° y = 30°, the power expressions

have also been evaluated at 3, 15°, 19°; 6, 45° 19°; and 6, 15°, 6°, in order

to ascertain the effect of varying fgs fp, and y. Although the relevant

P
frequencies vary considerably, the general shape of the frequency spectra

and angular patterns do not change appreciably. As a quantitative example,
it is found that a 10 keV electron at &, 15°, 6° radiates less than 10-33
watts/(c/s) at frequencies above 1 kec/s (the lowest considered) although fp =

5.5 ke/s and fp = 70 ke/s so that n is large, and furthermore below 1 kc/s the

cyclotron emission is confined to 80° < 6 < 100°,

Extraordinary-mode emission is considerably more complicated than ordinary-

: +
mode emission. The emission equation roots cos es'(F) are plotted in Fig, 8

for s = 0,+1,+2,+¥3 ,+4 with P = 2.25 and a few arbitrary values of B85« The

Cerenkov emission is again in the forward hemisphere but the cyclotron emission

is spread over both the forward and backward directions. The complicated

nature of the solution for F ~s/y £ P is qualitatively expected from Eq. (3-23)

and the discontinuity at F = P for small 8, is attributable to the sharp change

in n_

there.
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Emission in this mode is restricted by the index to the frequency band

F, < F < piAx o (P2+1)l/2.

Z R~

Some analytical properties of the solutions are

observed by expanding them in the limit 82 << 1,

0
(o]
(7]
@
1

(1-s/¥F)?/8,2 + & + (P2-F2)/P2 - (P2-£2)3/P2F2 + 0(8,2)  (4-21)

(9]
O
7]
=
I

= coszeR[l - Bzzél(l-slyF)2 + 0(624)]

where

§ = 2r2/p% - 1 - 2(P2-F%)2/p2-cos? © (4=22)

R

+ . s .
In general F # s/y so that cos? GS > 1 due to the first term in its expansion

and cos2 es' o cos? BR(<1 for F > P). When F & s/yY the root cos2 e may con-

s

tribute to the emission pattern depending on the other parameters. However, the

expansion for cos2 Bs is not valid when F & s/y. At F = P # s/y it is found
that § = 0 and cos2 GR = 1 so that cos2 98- & ]1. Also, at the frequency band
limit F = (P241)1/2, cos? 6 "~ cos? oy = o.

The frequency spectra and angular patterns of the Cerenkov and cyclotron
power radiated in the extraordinary mode by 10 and 1000 keV electrons at L = 3,
A = 30°, with y = 30° are shown in Figs. 9 and 10, In this mode much of the
energy is radiated at small angles to the static field Eo by the cyclotron
fundamental. The power singularity at 6 = n/2, F = (132+l)l/2 is suppressed
by a bound on the index as before., The Cerenkov emission near 6 = 0, F = P
is not adequately described by this formalism; it consists of electric waves
(Ex, Eg = 0, Ep # 0) which travel with tte source (62n = 1) and the infinite
power obtained here is invalid. A detailed treatment of this Cerenkov effect

has been given by CGerwin and Cuernsey (1963).
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5. DISCUSSION

Since the elementary model plasma described in the last section
leads to the emission of an infinite amount of energy by the gyrating
electron, it is necessary to introduce some additional effects which
will limit the emission and give a physically meaningful result. The
major factors which were omitted previously are thermal motion, ionic
motion, and collisions in the background medium. For VLF propagation
in the magnetosphere and certain other applications, the dominant mod-
ification of the propagation properties is obtained by including thermal
motion alone.

Mathematically the boundless energy radiated into the plasma

medium is due to the unbounded property of ny at FRt' From Figs. 5

and 8 it is evident that the solution of the emission equation approaches
6y when F approaches 0, @ approaches n/2, orls|increases, and the power
increases sharply because o is proportional to n2. Consequently, a
physical process which introduces a finite upper bound ﬁ* on the index

is essential if the radiation is to have -hysical meaning. Furthermore,
such a bound implies |coseg| 3 |cos®y,FZ Fyolsl< 84, and g, > é?t ac-
cording to Eq. (3-23), and the values of these limits depend on the

explicit form of n

t

An artificial bound on the index is introduced here to demonstrate
the qualitative effect that it produces on the frequency spectra and
angular patterns of the radiated power. The index is assumed to be

given by Eq. (4-3) when n, < n, and by &

w - - -
+ hen Ny > Ng. Since ng increases
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monotonically as lcosB;] approaches cos GR, the solution of the emission
equation is cutoff at the discontinuity where |cos B;i = jcos 8;|. In Figs. 5 to
10 the cutoff is shown for the case n = 20, The finite power for this
artificial case is described by the solid curves. Although the sharp
edges would disappear for a continuous index, the dominant maxima are
expected to remain. It is noteworthy that the nonrelativistic maxima

in both propagation modes occur at the cutoff (Figs, 6 and 9) so that a
small change in the cutoff location produces a large change in the
radiated power. The extent to which this artificial case is quanti-
tatively applicable to a real case depends on the validity of the

index approximation which is discussed below.

Insofar as the index approximation is valid, a comparison can be made
between the power in the different harmonics and between different electron
energies. For this purpose the power expressions were evaluated at a few
intermediate energies (not shown). In general the maximum power in the normal
and anomalous cyclotron harmonics and the Cerenkov radiation (when it exists)
is comparable at a given energy. The total radiated power is a slowly de-
creasing function of 82 (or kinetic energy for a fixed pitch angle) at non-

relativistic speeds with an average level of 10730

=25

watts/(c/s) in the ordinary
mode and 10 watts/{(c/s) in the extraordinary mode. The range of speeds By
which allow Cerenkov radiation is severely restricted from below by a bounded
index and above by lack of a polarization interaction. At relativistic speeds
the higher cyclotron harmonics dominate but they are restricted by the upper
bound s.

The formulas for the dielectric tensors, polarization coefficients, and

refractive indices which include additional effects are quite
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complicated and difficult tovapply. The extent of their influence
on the results is evaluated app
special cases.

Random thermal motion is considered first. Since it tends to
disorganize the ordered motion which is essential for wave propagation,
there is.é minimum phase velocity (or ﬁt) which the thermal medium
can support. The dielectric tensor for a thermal medium is known,
and an extensive review of the theory has been given by Stix (1963).
However, the dispersion equation is so complicated in general that it
has only been solved in a few special cases. In particular for 6 = 0
(or w), the maximum occurs at F = 1 and for a Maxwellian distribution
with temperature T, its value is ﬁ+== 31/2P2/3(ﬂmc2/KT)l/6/2. Liemohn
and Scarf (1963) used a bell-shaped algebraic distribution which gives
a much simpler dispersion equation to study the longitudinal whistler
mode n+(8=0). They found that the zero-temperature index is a valid

. . 2
approximation when 1-F >> (KT/mc )l/2n

+° As yet n, has not been studied
for arbitrary 6,and n_ has not been considered at all'although similar
behavior is anticipated.
It is impossible to accurately assess the thermal effect on the
emission with this limited amount of information about the index.
Nevertheless some speculation is conceivable. For the magnetospheric
case T = 1250°K and P = 2,25, the zero-temperature index for 8 = 0 or =
is valid when 1-F >> 0,02 and n_ < ﬁ+ = 20 (see Fig, 3). Hence, the artificial
discontinuous index used in Figs. 5 to 7 is a good approximation when

|cos €|>>0. At other angles of emission and In the extraordinary mode the

validity of the index approximation is unknown at present.
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In a thermal magnetoplasma the electromagnetic waves are also

ok o 1~ T o A St IA DS AT a
ropagate so that the power expressions are onl

absorbed as they p
valid near the source. The absorption is due to the cyclotron resonance
mechanism. The component of thermal motion parallel to Eo causes a
Doppler shift of the propagation frequency in the rest frame of each
electron, For each angle of propagation there is a corresponding
velocity component which shifts the propagation frequency to the
resonance. Hence, the damping decrement depends on the frequency and
angle of propagation as well as the thermal velocity distribution of
the electrons. Its value is determined by the general solution of the
dispersion equation. Due to the frequency and angular dependence, the
power spectra and patterns will change as the signal propagates away
from the source. Fortunately, in many applications the temperature of
the plasma is so low that very few electrons resonate and the thermal
attenuation is negligible. If the background plasma has an appreciable
number of "fast" electrons due to a high temperature or other sources,
however, the damping must be considered.

In a recent series of papers several limiting cases of emission in
a thermal magnetoplasma are analyzed by Pakhomov, Stepanov, and Aleksin
(1962, 1963a, 1963b). In general their analysis is restricted to the
index values n . ~1 where several approximations for the emission equation

and the power could be made. When the limitation on n, is relaxed other

restrictions on w or 6 are imposed. Hence, their results cover a variety

of special cases but do not provide information about the complete frequency

spectra and emission patterns. A convenient feature of their expressions

is that the thermal attenuation factors are included explicitly.
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Due to the inertia of the ions, they only interact appreciably
with the electromagnetic fields when I << 1. In this region Hines {1957)
has shown that the index is bounded for 6 ~ 0z and ionic effects are

important when F < (m/M)l/2

. Since cos6” ~ F when P > 1 according to
Eq. (4-14), the limit is also applicable to the angle of emission. For
the particular case of ionized hydrogen, the limit is so close to the
transverse direction that the bound imposed on the power is extremely
large compared to the anticipated thermal bound. Consequently ionic
effects can usually be disregarded.

Collisions which the elctrons make with heavy particles in the medium
are usually approximated by a viscous damping force in the equation of
motion. Such a force restricts the wave propagation in a manner similar
to thermal motion. The theory has been reviewed by Ratcliffe (1959),
Ginzburg (1960) and others. In general collisions are only important when
the collision frequency W satisfies W 2 W In the magnetosphere W, < 10
rad/sec so that collisions are negligible in the VLF band. Unfortunately,
the dielectric tensor for this elementary theory is not hermitian so

that when collisions must be included a differeut formulation of the

problem is needed.



The foregoing properties of the radiation from electrons in a magneto-

plasma suggest some conclusions about the role that electron emissions

might play in the generation of VLF and LF emissions, An important test for any

prospective source is to compare the theoretical and observed power of
the signal. Also, since the emissions have a wide variety of discrete
dispersion patterns as well as continuous bands, some mechanism is needed

to provide for frequency selection. Finally, the emission properties

suggest another strong signal which is only observable by satellites or rockets.

In the magnetosphere the geomagnetic field and the plasma density
vary so slowly in space and time that the propagation theory for uniform
media is usually acceptable., However, the magnetosphere changes signi-
ficantly over several wavelengths so that a signal which propagates in
one region may be absorbed at a resonance or reflected at a cutoff in a
nearby region. A further complication is presented by the ionosphere where
the electron density increases sharply. On the geomagnetic equator the
cyclotron frequency varies continuously as the inverse cube of g=2ocentric
distance fromtv} Mc/s at the earth's surface to ~1 kc/s near 10 earth radii.
The variation of the plasma frequency is very similar with a range from
~5 Mc/s in the F2 peak of the ionosphere to~20 kc/s near 10 earth radii.
Mathematical models of the region which include latitude effects are
presented in the Appendix. In the magnetosphere P varies from ~0,03 to ~20.
At the conclusion of section 3 it was noted that the ray path followed
by the electromagnetic energy is not in the wave normal direction (6) but

rather is in the time-average Poynting vector direction much closer to the




magnetic field direction. As a result it is frequently assumed that the
ray path follows a magnetic flux tube. While such an approximation is
questionable, it provides a convenient framework for discussing some general
propagation properties of electron emissions from their sources to potential
receivers.

Due to the cutoffs and resonances of the modes, the signals only
propagate in well defined regions of the magnetosphere. In the whistler
mode the emitted frequencies can always propagate into regions of increasing
wy (inward) but can only propagate into regions of decreasing Wy (outward)
if F < FR+ (neglecting thermal and collisional effects). In the extra-
ordinary mode the emitted frequencies can propagate into regions of
increasing Wy until F = FZ where they are reflected and can propagate
into regions of decreasing wy if F< FRF. Hence, the signals in the whistler
mode can penetrate the ionosphere and reach the ground whereas signals
in the other mode are reflected in general above the ionosphere, and both
modes have a minimum upper frequency limit which occurs at the equator. A
schematic diagram of possible propagation paths is shown in Fig, 11, Since
part of the whistler mode energy is reflected at the ionosphere by irregular-
ities, an emission may echo between hemispheres. Similar echoing in the
extraordinary mode is only possible when the source is very near the equator.

A detailed calculation of the VLF and LF power which is racdiated into the

magnetosphere is impossible at this time because the propagation properties are

not fully understood and the phase space distribution of the electrons is un-
known to a large extent. Hence, some crude estimates of the power from in-
coherent and coherent sources must suffice.

First, it will be shown with a specific numerical calculation that

incoherent electron emissions apparently cannot account for the observed




- 39 -

emissions received on the ground in the whistler mode. The density of
magnetospheric electrons Ng which emit appreciable radiation is assumed

to be ~0.1 elect/cm3 which is fairly consistent with satellite measurements
reported by O'Brien (1962) and whistler analysis by Liemohn and Scarf
(1964)., The volume of a flux tube with a 1 cm2 base which crosses the
equator at 3 earth radii (L = 3) is found to be ~1010 cm3. On the basis
of the numerical results for the ordinary mode the average emitted power Pe

=30 Latts/(c/s). With

along the flux tube is assumed to be on the order of ~10
these gross approximations the incoherent power at the base of the flux tube
is found to be 10-21 watts/cm2(c/s). This is several orders of magnitude
below the observed power level Pr of 10—lu watts/ch(c/s) at the base of the
magnetosphere (above the ionosphere).

Secondly, coherent emissions from "bunches" of electrons are shown
to be a feasible source of the emissions. Since the electromagnetic fields
of individual sources must be in phase for coherent radiation, the total
power is proportional to the number of emitters squared. The reaquired
size of the bunch is determined by equating the observed power over area

A, to the emitted power from an extended source of cross section A, and

length 1, with coherent efficiency €,
2
Ar Pr = Pe(ENe Ae le) (6-1)

The radiation is assumed to be confined to a flux tube so that B Ap = BeAe'
Then, with the values of P., P, and Ne given above and the arbitrary

) _ _ 2 _ .. +23 4
assumptions Be/Br = 0.1 and € = 0,001 Eq. (6-1) reduces to Al =10 cm .

Hence, the dimensions of the bunches are small relative to the magnetosphere
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and the scale is comparable to a few wavelengths. On the basis of this crude

e

calculation it appears feasible that ccherent emission from electron bunches
is a conceivable source of the emissions in the ordinary mode.

Since the electron emissions are continuous over a wide band of frequencies,
the discrete nature of the observed VLF emissions must be attributed to the
coherent interaction. The triggering of emissions which Helliwell (1963) has
observed suggests that strong whistler mode signals from lightning strokes
interact with the electrons and organize their phase space distribution so that
specific frequencies are amplified by coherence. The various interaction
mechanisms which may produce this bunching have been reviewed by Brice (196u4).

The one-dimensional calculations by Dowden (1962c) and others, which
support the theory that emission at the Doppler-shifted fundamental cyclotron
frequency (Fl(w)) is responsible for hooks, is not ruled out by these results,
but it is much more likely that stronger emissions at other frequencies in
nonlongitudinal directions dominate the coherent signals. The traveling wave
tube amplification of incoherent signals which is proposed by Helliwell and
Callet (1959) seems improbable because a gain of several crcders of magnitude
is required.

The power in the extraordinary mode is considerably stronger than that in
the ordinary mode above the ionosphere. Hence, much less coherence is necessary
for this mode to produce signals vwhich are detectable in the presence of the
observed whistler mode noise level. The average power level is on the order of
10'25 watts/(c/s) so that .109 electrons in the flux tube described above pro-

o-16 watts/cm2(c/s) of incoherent power at the base of the tube, Rocket

duce 1
observations by Walsh, Haddock, and Schulte (1963) have revealed intense noise

signals in the extraordinary mode so that this mode cannot be ignored.
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Certainly the calculations presented here are based on very limited
numerical results and must be considered as only preliminary estimates of the
povwer levels, A thorough quantitative analysis must await the inclusion of
additional liﬁiting physical effects such as thermal motion and perhaps col-
lisions, However, they serve to point out some inherent wezknesses in the
existing theories for VLF emissions in the ordinary mode, and they point out
complications by the extraordinary mode when observations are made above the
ionosphere. Furthermore, order of magnitude calculations of the power provide
an additional test for future theories of VLF and LF emissions which are

based on charged particle radiation in a plasma.
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APPENDIX !
The magnetic field of the earth is closely approximated by a dipole
field of the form

B = b(-2 sinX R + cosA R)/R3
ﬂ

where R is the geocentric radial distance and A is geomagnetic latitude.
With R expressed in earth radii the dipole moment b is 0,313 gauss (earth

radii)s. The field line equation is

R=1 cos2 X

where L is the radial distance at which the field line intercepts the

equator (McIlwain L parameter). The scalar field is given by

2 ,,1/2,.3 6

B, = b(1 + 3 sin® ) /L cos” A
Several mathematical models which closely approximate the thermal
plasma density- in the magnetosphere have been proposed. In this analysis

the field-line diffusion model by Johnson (1962) is used,
N_ = 12500R™3 cos®h exp (6rR™1 sin? 1) R > 1.3
where G =MgRe/2KT is the scale factor of the medium in earth radii (R,).

The temperature of the plasma T is usually assumed to be ~ 1250°K which

gives G = 3.
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The motion of high-energy electrons in this medium is described by
the first-order orbit theory for trapped particles (Welch and Whitaker,
1858, Chamberlain, 1963). The electrons are constrained to follow helical
orbits along magnetic flux tubes and are reflected at conjugate mirror
points in opposite hemispheres, The longitudinal motion is neglected
here. Due to conservation of the electron's magnetic moment, the pitch
angle ¢ between the velocity and field vectors is related to its equatorial
value we by

3

2 A)l/u A

sin ¢y = (1 + 3 sin sin we/cos
The latitude of the mirror point Am is determined by setting ¢ = n/2 in
this equation. Hence, the orbit is completely specified by only two

parameters, L and we,‘which are independent of the kinetic energy.
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6a
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FIGURE CAPTIONS

The position and velocity coordinates of an electron on a

helical trajectory.

The components of the electric vector E of the radiation field
in a magnetoplasma. The wave normal k and the Poynting vector

S are not parallel in general.

The ordinary (whistler) mode index of refraction, The quasi-
longitudinal resonance approximation |cos 6| and the thermal

cutoff for longitudinal (6 = 0°) propagation are also shown.

The extraordinary mode index of refraction.

+
Solutions of the emission equation 6; (F) for Cerenkov (s=0)
and normal (s > 0) and anomalous (s<0) cyclotron radiation in

the ordinary (whistler) mode.

Frequency spectra of Cerenkov (s=0) and normal (s>0) and anomalous
(s<0) cyclotron radiation in the ordinary (whistler) mode from

a 10 keV electron in a magnetoplasma. (L = 3.0, A = 30°)

Angular patterns of Cerenkov (s=0) and normal (s>0) and anomalous
(s<0) cyclotron radiation in the ordinary (whistler) mode from

a 10 keV electron in a magnetoplasma. (L = 3.0, X = 30°)




Fig. 7a

Fig. 7b

Fig. 8

Fig, 9b

Fig. 10a

Fig. 10b
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Frequency spectra of normal (s>0) and anomalous (s<0) cyclotron
radiation in the ordinary (whistler) mode from a 1000 keV electron

in a magnetoplasma. (L = 3,0, A = 30°)

Angular patterns of normal (s>0) and anomalous (s<0) cyclotron
radiation in the ordinary (whislter) mode from a 1000 keV electron

in a magnetoplasma. (L = 3,0, A = 30°)

+
Solutions of the emission equationyeg (F) for Cerenkov (s = 0)

and normal (s > 0) and anomalous (s < 0) cyclotron radiation in the

extraordinary mode,

Frequency spectra of Cerenkov (s=0) and normal (s>0) and anomalous
(s<0) cyclotron radiation in the extraordinary mode from

a 10 keV electron in a magnetoplasma. (L = 3.0, X = 30°)

Angular patterns of Cerenkov (s=0) and normal (s>0) and anomalous
(s<0) cyclotron radiation in the extraordinary mode from & 10 keV

electron in a magnetoplasma, (L = 3.0, A = 30°)

Frequency spectra of Cerenkov (s=0) and normal (s>0) and anomalous
(s<0) cyclotron radiation in the extraordinary mode from a 1000

keV electron in a magnetoplasma. (L = 3.0, A = 30°)

Angular patterns of Cerenkov (s=0) and normal (s>0) and anomalous
(s<0) cyclotron radiation in the extraordinary mode from a 1000

keV electron in a mapnetoplasma. (L = 3.0, X = 30°)




4 Fig. lla

Fig. 11b
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Possible ray (energy) paths for the ordinary (whistler) mode

of propagation in the magnetosphere.

Possible ray (energy) paths for the extraordinary mede of

propagation n the magnetosphere.
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